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Abstract. We consider the quasispecies description of a population evolving in both the ‘master
sequence’ landscape (where a single sequence is evolutionarily preferred over all others) and
the REM landscape (where the fitness of different sequences is an independent, identically
distributed, random variable). We show that, in both cases, the error threshold is analogous to
a first-order thermodynamical transition, where the overlap between the average genotype and
the optimal one drops discontinuously to zero.

An equation describing the behaviour of populations of self-reproducing entities, subject to
natural selection and to mutations, was introduced by Eigen [1]. The inheritable structure
(‘genotype’) of these entities is described by a sequence of lengthL of symbols belonging
to an alphabet ofκ characters (κ = 4 in the case of nucleic acids). In the simple case, in
which one such sequence is selectively preferred with respect to all others, Eigen was able
to show that his equation (thequasispecies equation) implies a transition (called theerror
threshold) between two different behaviours.
• At a low mutation rate, the population is made up, at equilibrium, of sequences close

to the preferred one (master sequence): it forms therefore aquasispecies.
• At a higher mutation rate, the distribution becomes uniform over sequence space.
This behaviour is reminiscent of a phase transition in statistical mechanics. Indeed,

Leutḧausser [2] showed that the quasispecies equation is equivalent to a statistical
mechanical model. The error threshold corresponds in this language to a thermodynamical
transition of the statistical mechanical system.

Later, Tarazona [3] qualified this correspondence, by pointing out that the properties
which described the behaviour of the evolving population corresponded tosurface
observables of the statistical mechanical model. In particular he argued that in the simple
situation mentioned above, with a single master sequence, while the naive application of
statistical mechanics predicted a first-order phase transition, the transition was continuous
for the evolutionary model. The discrepancy between the two predictions was attributed
to a surface phenomenon akin to wetting [4], where the disordered state is favoured on a
surface layer whose thickness diverges as the phase transition is approached.

The statistical mechanics approach to the quasispecies equation was later used by Franz
et al [5] to solve it in a ‘rugged fitness landscape’ (in which the selective value of each
different sequence is an independent random variable) modelled by Derrida’s random energy
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model (REM) [6]. In this case, a first-order transition between the quasispecies and the
uniform behaviour was found. This result has been challenged by Higgs and Woodcock [7].

The aim of this paper is to point out that the discrepancy between predictions is due
to the fact that one’s attention is directed towards different observables in the different
cases: a careful consideration of the ‘infinite genome’ (L→∞) limit, necessary to obtain
a sharp phase transition, shows that, in the ‘master sequence’ model, the error threshold is
a first-order phase transition. This does not rule out the fact that, in the same limit, the
fraction of individuals whose genotype is equal to the master sequence (or, for that matter,
is at any finite Hamming distance away from it) goes smoothly to zero at the transition. In
particular, the ‘wetting phenomenon’ described by Tarazona does not take place, at least
in this case. Similar results hold for the rugged fitness landscape. We are aware that
these considerations look rather academic, since the ‘order parameter’ which is more likely
to be measured in actual field studies is rather the frequence of the wild type (probably
corresponding to the frequence of the master sequence) than the overlap of the average
genotype. Our contribution essentially aims at showing that the analogy between the error
threshold and phase transition can be made sharper provided some confusing statements
appearing in the literature are cleared out.

Let us consider theκ=2 ‘master sequence’ model, defined as follows. The genotypes

is described byL units si = ±1, i = 1, . . . , L. The quasispecies equation, which describe
the evolution of the fractionxs(t) of individuals having the genotypes at generationt , takes
the form

xs(t + 1) = 1

Z(t)

∑
s ′
Qss ′ws ′xs ′(t) (1)

wherews is the fitness of sequences and‖Qss ′ ‖ is the mutation matrix. The normalization
factorZ(t) is given by

Z(t) =
∑
s

wsxs(t).

The matrix elementQss ′ is the conditional probability that a reproduction event of an
individual with genotypes ′ produces one with genotypes. If one assumes pointwise
mutations with uniform probability one has

Qss ′ = µdH(s,s
′)(1− µ)L−dH(s,s

′) (2)

where

dH(s, s
′) = 1

2

L∑
i=1

(1− sis ′i ) (3)

is the Hamming distance between the sequencess and s ′, andµ is the mutation rate. The
‘master sequence’ is denoted bys0 = (s0

i ). The fitnessws is then given by

ws =
{

exp(kL) if s = s0

1 otherwise.
(4)

In this expression,k > 0 is a ‘selective’ inverse temperature. We have chosen to
take lnws0 ∝ L in order to obtain the infinite genome limit in close analogy with the
thermodynamical limit. We shall discuss later the scaling considered by Eigenet al [1], in
whichwS0 → constant.

As pointed out by Leutḧausser [2] and Tarazona [3], the solution of equation (1) can be
expressed in terms of a statistical mechanical model. Let us consider a population evolving
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for T generations from an initial condition in whichxs = δss0. One has

xs(T ) = 1

Z
∑

s(1),s(2),...,s(T−1)

Qs(T )s(T−1)ws(T−1) . . .Qs(1)s0ws0

= 1

Z
∑

s(1),s(2),...,s(T−1)

exp

[ T∑
t=1

(lnQs(t)s(t−1) + lnws(t−1))

]
. (5)

We have sets(T ) = s, s(0) = s0, and we have defined the normalization constantZ by

Z =
∑

s(1),s(2),...,s(T−1),s(T )

exp

[ T∑
t=1

(lnQs(t)s(t−1) + lnws(t−1))

]
≡

∑
s(1),s(2),...,s(T−1),s(T )

exp(−H {s(t)}).

The last line defines the symbolH . It now turns out that, for the ‘master sequence’ model,

−H {s(t)} ≡
T∑
t=1

(lnQs(t)s(t−1) + lnws(t−1))

= T L ln(1− µ)+
T∑
t=1

(
β

L∑
i=1

si(t)si(t − 1)+ kδs(t−1)s0

)
(6)

where the ‘mutation’ inverse temperatureβ is defined by

β = 1

2
ln

1− µ
µ

. (7)

Expression (6) looks like the Hamiltonian (times the temperature) of an Ising system of
T L spins, arranged inT layers ofL spins each. The interlayer interactions, representing
the correlation effects due to the heredity, are proportional toβ, while the intralayer
interactions, representing the selection, are proportional tok. Tarazona [3] pointed out
that the intralayer interaction term corresponding to layerT is lacking in this expression:
the system corresponds therefore to a statistical mechanical model with a free surface.

It is now easy to see that, in the limitL→∞ followed byT →∞, a phase transition
separates an ordered (‘frozen’) regime in which one hass(t) = s0 for all layerst except the
last one, from a disordered (‘free’) one, in which all sequencess have the same probability,
and the system behaves like a collection ofL-independent one-dimensional Ising models
at temperatureβ−1. The transition line can be obtained by comparing the free energiesF

defined byF = − ln Z:
(1) for the ordered regime one has

F1 = −T L (k + β)+ boundary terms (8)

(2) for the disordered regime one has

F2 = −T L ln(2 coshβ)+ boundary terms (9)

corresponding to the free energy per spin of a one-dimensional Ising model.
The transition line is given by the conditionF1 = F2 (where the boundary terms are

neglected) and reads

kt(β) = ln(2 coshβ)− β. (10)

In terms of the mutation rateµ, this corresponds tokt = | ln(1−µ)|, as originally obtained
by Eigen [1].
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We now show in more detail that all layers but the last one (corresponding tot = T )
are ‘frozen’ fork > kt(β), in the sense that the only configurations which contribute in the
infinite genome limit are those for whichs(t) = s0 for t < T . Let us consider the last-but-
one layer (t = T − 1), and let us momentarily assume that the preceding layer is frozen.
The last layer is free, because there are no contributions from the intralayer interactions at
t = T [3]. There are two possibilities fors(T − 1).

(1) ‘Frozen’: s(T − 1) = s0: this yields a contribution exp[L(k + β)] × (2 coshβ)L to
the partition sum; the second factor comes from the sum over the configurations of the last
layer.

(2) ‘Free’: summing also over the configurations of the last-but-one layer, one obtains
the contribution(2 coshβ)2L.

Because one has, by hypothesis,k > kt(β) = ln(2 coshβ) − β, the first contribution
dominates forL→∞. By induction, one can show in the same way that it is not possible
for a labelt0 < T to separate ‘frozen’ layers (fort < t0) from ‘free’ ones (fort > t0).

Let us now define, following Tarazona [3], the order parameterm as the overlap of the
average sequence(〈si〉) with the master sequences0:

m = 1

L

L∑
i=1

〈si〉s0
i = 1− 2〈dH(s, s

0)〉/L. (11)

The angular brackets denote the population average:

〈A(s)〉 =
∑
s

xsA(s) (12)

where we have taken into account the fact that
∑

s xx = 1.
In the ordered phase, all layers but the last one are frozen to the master sequence. It is

then a simple matter to show that

m = tanhβ = 1− 2µ. (13)

On the other hand,m = 0, obviously, in the disordered phase. We have thus obtained
the result that the phase transition is offirst order, and thatm drops discontinuously from
1− 2µ to 0 ask falls below the transition valuekt. Let us also remark that equation (13)
predicts thatm = 0 for β = 0, even fork > kt(0) = ln 2, as it is reasonable to expect on
intuitive grounds.

This analysis is supported by the numerical solution of the quasispecies equation for
finite L. We show in figure 1 the order parameter as a function ofµ for different values
of L. The value ofk is such that the error threshold takes place forµ = µt = 0.25. One
clearly sees that the curve approaches a discontinuous behaviour asL increases, in contrast
to the statements contained in [3]. Let us remark that, properly speaking, the weightxs0(T )

in the population approaches zero in the thermodynamical limit (L→∞, k, β = constant).
Nevertheless, the population forms abona fidequasispecies, in the sense of [1].

Eigen [1], Leutḧausser [2], and Tarazona [3] have considered a situation in which the
fitness ratiows0/ws is kept constant asL increases. In this case, if the mutation rateµ (and
henceβ) is kept constant, one eventually crosses over smoothly to a ‘disordered’ regime,
independently of the value of this ratio. This is the point that Eigen wanted to make when
he introduced the quasispecies equation, back in 1971: that the error threshold prevented
biological information to be maintained, if genome length exceeded a certain value.

In this situation, there is no sharp phase transition, and the question of whether it is
of first or second order is pointless. However, even in this case, one can obtain a phase
transition in the limitL→∞, if one keeps the average numberµL of mutations constant.
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Figure 1. Order parameterm in the ‘master sequence’ model as a function of the mutation rate
µ for L = 10, 20, 40, 80. The selective temperaturek equals ln4

3 . Also plotted is the prediction
of equation (13).
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Figure 2. Weight xs0 = x0 of the master sequence as a function of the total mutation rate
u = 1− exp(−µL) for L = 10, 20, 40, 80. We have chosenkL = 1

4 so thatµtL = 1
4 . Also

plotted is the prediction [8]xs0 = 1− u/ut, whereut is the value ofu at the transition.

This corresponds to taking lnβ ∝ L. It is possible to solve the problem in this limit, and
the results concide with what one obtains by taking the same limit in the equations we have
written above. In particular, the transition is still of first order, but now the order parameter
m jumps from 1 to 0: just above the transition, thewhole population lies a finite Hamming
distance away from the master sequence (even though the weight of the master sequence
goes smoothly to zero).

On the other hand, this behaviour does contradict the fact that the weightxs0(T ) of the
master sequence (which does not vanish ifµ is small enough) approaches zerocontinuously
at the error threshold, as exhibited in figure 2. The limit behaviour is indeed given by [8]

xs0 =
{

1− u/ut for u < ut

0 otherwise
(14)
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whereu = 1− exp(−µL) is the total mutation probability, andut is the corresponding
transition value. However, even in the infinite genome limit, the whole population is the
offspring of master sequence individuals at each generation, and has therefore a finite overlap
with the master sequence, as soon as one is above the transition.

Let us now consider the REM fitness landscape. In this case the fitnessws is given by

ws = exp(−kE(s)) (15)

where the ‘energies’E(s) of different sequences are independent normally distributed
random variables, with zero average and a variance equal toL/2. We have correspondingly

Z =
∑

s(1),...,s(T )

exp

[ T−1∑
t=1

(
β

L∑
i=1

si(t)si(t + 1)− kE(s(t))
)]

(16)

where, as before, we assume thats(0) corresponds to an energy minimum. The bulk
properties of this model have been studied in [5] with the replica method. We briefly
illustrate here the results, using the argument originally developed by Derrida [6] to solve
the REM. Consider two neighbouring layers,t and t + 1, whose overlapq, defined by

q = 1

L

L∑
i=1

si(t)si(t + 1)

has a fixed value. The average number of these configurations with energy equal toE is
given by

N (E, q) ∼ exp(LS(q)− E2/L) (17)

whereS(q) = ln 2− 1
2[(1+ q) ln(1+ q)+ (1− q) ln(1− q)]. The typical value is equal to

the average value if the latter is exponentially large, and vanishes otherwise. We can thus
write for a typical sample:

Z =
∫
(LS(q)−E2/L)>0

dE dqN (E, q)exp[T (−kE + Lβq)]. (18)

This expression is dominated by the saddle point in the free phase, and by the smallest
value of the energy (andq = 1) in the frozen phase. The typical value can be obtained by
equation (17), by settingN (E, 0) ∼ O(1), and is equal to−L√ln 2. The free energy is
thus

F =
−T L[ln(2 coshβ)+ k2/4] in the free phase

−T L
(
k
√

ln 2+ β
)

in the frozen phase.
(19)

By a comparison of the free energies, the transition line is located at [5]

kt(β) = 2
(√

ln 2−
√
β − ln(coshβ)

)
. (20)

We remarken passantthat, in contrast to the REM and other systems with discontinuous
glass transitions [9], here the transition is thermodynamically of first order, with a latent
heat that can easily be computed from equation (19).

The surface (evolutionary) properties can be worked out as in the ‘master sequence’
case. Let us consider the frozen phase, and let us assume that layerT −2 is frozen into one
of the REM ground states. We focus on layerT −1 and assume that layerT is free. Layer
T then has no influence on layerT − 1, whose contribution to the free energy is given by

ZT−1 =
∑
s(T−1)

exp

(
− kE(s(T − 1))+ β

∑
i

si(T − 2)si(T − 1)

)
. (21)
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Analysing equation (21) as above, we find a freezing transition into the ground state, with
the same conditions as for the bulk. Therefore, as long ask > kt, all layers but the last one
are frozen in the energy ground state. It is clear at this point that all along the frozen phase
m = (1/L)∑i〈si(0)si(t)〉 is independent oft for t > 0, and is given bym = tanhβ. In the
same way, the weight of the optimal sequence behaves as in the ‘master sequence’ model.

Summarizing, we have shown that in the ‘master sequence’ and in the REM landscapes
for the quasispecies equation, in the limit in which one can speak of sharp phase transitions,
surface phenomena do not appear. Indeed the surface passively follows the behaviour of
the bulk. This is due to the pathology of the model, that is one-dimensional in the time
direction, but mean field as in the sequence direction. The analysis also shows that ‘master
sequence’ and REM landscapes, apart from details, have very similar evolutive properties.
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SF thanks the Laboratoire de Physique Théorique of the Ecole Normale Supérieure (Paris)
for hospitality and support during the elaboration of this work. LP is an associate of the
Istituto Nazionale di Fisica Nucleare, Sezione di Napoli, and acknowledges the support of
Chaire Joliot of the ESPCI.

References

[1] Eigen M 1971Naturwissenschaften58 465
Eigen M, McCaskill J and Schuster P 1989Adv. Chem. Phys.75 149
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